Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482626

RESUMO

Neurodegenerative disorders are distinguished by the progressive loss of anatomically or physiologically relevant neural systems. Atypical mitochondrial morphology and metabolic malfunction are found in many neurodegenerative disorders. Alteration in mitochondrial function can occur as a result of aberrant mitochondrial DNA, altered nuclear enzymes that interact with mitochondria actively or passively, or due to unexplained reasons. Mitochondria are intimately linked to the Endoplasmic reticulum (ER), and ER-mitochondrial communication governs several of the physiological functions and procedures that are disrupted in neurodegenerative disorders. Numerous researchers have associated these disorders with ER-mitochondrial interaction disturbance. In addition, aberrant mitochondrial DNA mutation and increased ROS production resulting in ionic imbalance and leading to functional and structural alterations in the brain as well as cellular damage may have an essential role in disease progression via mitochondrial malfunction. In this review, we explored the evidence highlighting the role of mitochondrial alterations in neurodegenerative pathways in most serious ailments, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).

2.
Ageing Res Rev ; 96: 102269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479477

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and a significant societal burden. Despite extensive research and efforts of the multidisciplinary scientific community, to date, there is no cure for this debilitating disease. Moreover, the existing pharmacotherapy for AD only provides symptomatic support and does not modify the course of the illness or halt the disease progression. This is a significant limitation as the underlying pathology of the disease continues to progress leading to the deterioration of cognitive functions over time. In this milieu, there is a growing need for the development of new and more efficacious treatments for AD. Agmatine, a naturally occurring molecule derived from L-arginine, has emerged as a potential therapeutic agent for AD. Besides this, agmatine has been shown to modulate amyloid beta (Aß) production, aggregation, and clearance, key processes implicated in AD pathogenesis. It also exerts neuroprotective effects, modulates neurotransmitter systems, enhances synaptic plasticity, and stimulates neurogenesis. Furthermore, preclinical and clinical studies have provided evidence supporting the cognition-enhancing effects of agmatine in AD. Therefore, this review article explores the promising role of agmatine in AD pathology and cognitive function. However, several limitations and challenges exist, including the need for large-scale clinical trials, optimal dosing, and treatment duration. Future research should focus on mechanistic investigations, biomarker studies, and personalized medicine approaches to fully understand and optimize the therapeutic potential of agmatine. Augmenting the use of agmatine may offer a novel approach to address the unmet medical need in AD and provide cognitive enhancement and disease modification for individuals affected by this disease.


Assuntos
Agmatina , Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Agmatina/farmacologia , Agmatina/uso terapêutico , Cognição
3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895912

RESUMO

Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.

4.
Int J Neurosci ; : 1-11, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801395

RESUMO

OBJECTIVES: To study the pharmacological interactions between agmatine and gamma aminobutyric acid (GABA) modulatory agents in the regulation of anxiety-like behavior in rats. MATERIALS AND METHODS: Male Wistar rats were treated drugs per se or in combination and 15 min after last injection were subjected to elevated plus-maze (EPM) test. Anxiety-like behavior was evaluated by measuring behavioral conventional readout, open arm activity (duration and/or entries) for 5-minute duration. RESULTS: Acute intra-central amygdala (CeA) injection of agmatine (0.1-0.6 µmol/site/rat), muscimol (0.25-1 nmol/site/rat), diazepam (5-20 µg/site/rat) and allopregnanolone (2-8 µg/site/rat) increased open arm entries of the rats in EPM suggesting anxiolytic effect in dose dependent manner. Moreover, the anxiolytic effect at subeffective dose of agmatine (0.1 µmol/site/rat) was potentiated by subeffective dose of muscimol (0.25 nmol/site/rat), diazepam (5 µg/site/rat) and allopregnanolone (4 µg/site/rat). Whereas, pretreatment with GABAA receptor antagonist, bicuculline (10 ng/site/rat) blocked the anxiolytic effect of agmatine and its synergistic effect of agmatine plus muscimol. Similarly, benzodiazepine (BZD) receptor antagonist, flumazenil (15 µg/site/rat) and GABA allosteric modulator antagonist, RO 15-45 13 (10 µg/site/rat) reduced the anxiolytic effect of agmatine, given alone and with diazepam and allopregnanolone, respectively. CONCLUSION: These results indicated that anxiolytic effect of agmatine is medicated via GABAergic mechanisms, probably conciliated by the GABAA receptor subtypes. Modulation of interplay between agmatine and GABAA receptor activity might be a pertinent solution for the regulation of anxiety.

5.
Nutrients ; 15(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686782

RESUMO

Avenanthramides (Avns) and their derivatives, a group of polyphenolic compounds found abundantly in oats (Avena sativa Linn.), have emerged as promising candidates for neuroprotection due to their immense antioxidant, anti-inflammatory, and anti-apoptotic properties. Neurodegenerative diseases (NDDs), characterized by the progressive degeneration of neurons, present a significant global health burden with limited therapeutic options. The phosphoinositide 3-kinase (PI3K) signaling pathway plays a crucial role in cell survival, growth, and metabolism, making it an attractive target for therapeutic intervention. The dysregulation of PI3K signaling has been implicated in the pathogenesis of various NDDs including Alzheimer's and Parkinson's disease. Avns have been shown to modulate PI3K/AKT signaling, leading to increased neuronal survival, reduced oxidative stress, and improved cognitive function. This review explores the potential of Avn polyphenols as modulators of the PI3K signaling pathway, focusing on their beneficial effects against NDDs. Further, we outline the need for clinical exploration to elucidate the specific mechanisms of Avn action on the PI3K/AKT pathway and its potential interactions with other signaling cascades involved in neurodegeneration. Based on the available literature, using relevant keywords from Google Scholar, PubMed, Scopus, Science Direct, and Web of Science, our review emphasizes the potential of using Avns as a therapeutic strategy for NDDs and warrants further investigation and clinical exploration.


Assuntos
Avena , Doenças Neurodegenerativas , Fosfatidilinositol 3-Quinases , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Grão Comestível , Fosfatidilinositol 3-Quinase
6.
Mitochondrion ; 72: 59-71, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495165

RESUMO

Biological researchers are seeing organelles in a new light. These cellular entities have been believed to be singular and distinctive structures that performed specialized purposes for a very long time. But in recentpast years, scientists have learned that organelles become dynamic and make physical contact. Additionally, Biological processes are regulated by organelles interactions and its alteration play an important role in cell malfunctioning and several pathologies, including neurodegenerative diseases. Mitochondrial-ER contact sites (MERCS) have received considerable attention in the domain of cell homeostasis and dysfunction, specifically in the area of neurodegeneration. This is largely due to the significant role of this subcellular compartment in a diverse array of vital cellular functions, including Ca2+ homeostasis, transport, bioenergetics and turnover, mitochondrial dynamics, apoptotic signaling, ER stress, and inflammation. A significant number of disease-associated proteins were found to physically interact with the ER-Mitochondria (ER-MT) interface, causing structural and/or functional alterations in this compartment. In this review, we summarize current knowledge about the structure and functions of the ER-MT contact sites, as well as the possible repercussions of their alteration in notable neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and fronto-temporal dementia. The constraints and complexities in defining the nature and origin of the highlighted defects in ER-MT communication, as well as their concise contribution to the neurodegenerative process, are illustrated in particular. The possibility of using MERCS as a potential drug target to prevent neuronal damage and ultimately neurodegeneration is the topic of our final discussion.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/patologia
7.
Biophys Rev ; 15(2): 239-255, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124925

RESUMO

Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.

8.
Neurotox Res ; 41(6): 708-729, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37162686

RESUMO

Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.


Assuntos
Doenças Neurodegenerativas , Humanos , Idoso , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/uso terapêutico , Estresse Oxidativo , Envelhecimento
9.
Brain Res Bull ; 191: 69-77, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272666

RESUMO

Antipsychotic-induced obesity affects millions of people and is a serious health condition worldwide. Olanzapine is the most widely prescribed antipsychotic agent with high obesogenic potential. However, the exact mechanism by which it causes its metabolic dysregulation remains poorly understood. In this study, we investigated the effect of agmatine in olanzapine-induced metabolic derangements in Female Sprague-Dawley rats. Repeated olanzapine administration for 28 days increased body weight while treatment with agmatine from days 15 to 28 prevented the body weight gain induced by olanzapine without any alteration in food intake. Repeated agmatine treatment decreased the elevated feeding efficiency and adiposity index, as well as improved dysregulated lipid metabolism induced by olanzapine. Increased activity of fatty acid synthase (FAS) and decreased expression of carnitine palmitoyl transferase-1 (CPT-1) were detected in chronic olanzapine-treated rats. Although agmatine treatment did not alter FAS activity, it increased CPT-1 activity. It is possible that the inhibitory effect of agmatine on weight gain and adiposity might be associated with increased mitochondrial fatty acid oxidation and energy expenditure in olanzapine-treated rats. We suggest that agmatine can be explored for the prevention of obesity complications associated with chronic antipsychotic treatment.


Assuntos
Agmatina , Antipsicóticos , Ratos , Feminino , Animais , Olanzapina/farmacologia , Antipsicóticos/farmacologia , Agmatina/farmacologia , Benzodiazepinas/farmacologia , Ratos Sprague-Dawley , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Aumento de Peso , Peso Corporal , Ingestão de Alimentos
10.
Biomed Pharmacother ; 147: 112647, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35149361

RESUMO

Protein misfolding causes aggregation and build-up in a variety of brain diseases. There are numeral molecules that are linked with the protein homeostasis mechanism. Molecular chaperones are one of such molecules that are responsible for protection against protein misfolded and aggregation-induced neurotoxicity. Many studies have explored the participation of molecular chaperones in Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, and Huntington's diseases. In this review, we highlighted the constructive role of molecular chaperones in neurological diseases characterized by protein misfolding and aggregation and their capability to control aberrant protein interactions at an early stage thus successfully suppressing pathogenic cascades. A comprehensive understanding of the protein misfolding associated with brain diseases and the molecular basis of involvement of chaperone against aggregation-induced cellular stress might lead to the progress of new therapeutic intrusion-related to protein misfolding and aggregation.


Assuntos
Chaperonas Moleculares/metabolismo , Deficiências na Proteostase/patologia , Doença de Alzheimer/patologia , Esclerose Amiotrófica Lateral/patologia , Autofagia/fisiologia , Encéfalo/metabolismo , Doença de Huntington/patologia , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase/fisiologia , Ubiquitina/metabolismo
11.
Asian J Psychiatr ; 68: 102961, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890930

RESUMO

One of the comorbid conditions in an individual with Alzheimer's disease is a sleep disorder. Clinical features of sleep disorders involve various sleep disturbances such as Obstructive Sleep Apnea (OSAS), Excessive Daytime Sleepiness (EDS), Rapid Eye Movement (REM), Breathing Disorders, Periodic limb movements in sleep (PLMS), etc. The primary tools used for the identification of such disturbances are Polysomnography (PSG) and Wrist actigraphy. This review will highlight and explains the different approaches used in the treatment of sleep disorders. Non-pharmacological treatments include Peter Hauri rules, sleep education program, and light therapy which play a key role in the regulation of sleep-wake cycles. Pharmacological therapy described in this article may be useful in treating sleep destruction in patients with Alzheimer's disease. Along with the Non-pharmacological and pharmacological treatment, here we discuss five commonly recognized plant-based nutraceuticals with hypothesized impact on sleep disorders: caffeine, chamomile, cherries, L-tryptophan, and valerian by the proper emphasis on the known mechanism of their action.


Assuntos
Doença de Alzheimer , Distúrbios do Sono por Sonolência Excessiva , Transtornos do Sono-Vigília , Doença de Alzheimer/tratamento farmacológico , Humanos , Polissonografia , Sono , Transtornos do Sono-Vigília/tratamento farmacológico
12.
Brain Res Bull ; 167: 37-47, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242522

RESUMO

Chronic maternal ethanol exposure leads to poor intelligence, impaired cognition and array of neurological symptoms in offsprings and commonly referred as fetal alcohol spectrum disorder (FASD). Despite high prevalence and severity, the neurochemical basis of FASD remains largely unexplored. The present study evaluated the pharmacological effects of agmatine in cognitive deficits associated with FAS in rat's offsprings prenatally exposed to alcohol. Pregnant rats received ethanol in liquid modified diet during the entire gestational period of 21 days. Offsprings were treated with agmatine (20-80 mg/Kg, i.p.) during early postnatal days (PND: 21-35) and subsequently evaluated for anxiety in elevated plus maze (EPM), depression in forced swim test (FST) and learning and memory in Morris's water maze (MWM) during post adolescent phase. Hippocampal agmatine, BDNF, TNF-α and IL-6 levels were also analyzed in prenatally ethanol exposed pups. Offsprings prenatally exposed to ethanol demonstrated delayed righting reflex, reduced exploratory behavior along with anxiety, depression-like behavior and impaired memory. These behavioral abnormalities were correlated with a significant reduction in hippocampal agmatine and BDNF levels and elevation in TNF-α and IL-6 immunocontent. Chronic agmatine (40 and 80 mg/Kg, i.p.) administration for 15 days (PND: 21-35), improved entries and time spent in open arm of EPM, decreased immobility time in FST. It also reduced latency to reach the platform location; increased the number of entries, time spent in platform quadrant and also number of crossing over platform quadrant when subjected to MWM test in prenatally ethanol exposed offsprings. This study provides functional evidences for the therapeutic potential of agmatine in cognitive impairment and other neurological complications associated with FASD.


Assuntos
Agmatina/farmacologia , Disfunção Cognitiva/etiologia , Transtornos do Espectro Alcoólico Fetal , Hipocampo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley
13.
Neurosci Lett ; 740: 135447, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127446

RESUMO

Alzheimer's disease is an age related progressive neurodegenerative disorder characterized by decline in cognitive functions, such as memory loss and behavioural abnormalities. The present study sought to assess alterations in agmatine metabolism in the beta-amyloid (Aß1-42) Alzheimer's disease mouse model. Aß1-42 injected mice showed impairment of cognitive functioning as evidenced by increased working and reference memory errors in radial arm maze (RAM). This cognitive impairment was associated with a reduction in the agmatine levels and elevation in its degrading enzyme, agmatinase, whereas reduced immunocontent was observed in its synthesizing enzyme arginine decarboxylase expression within hippocampus and prefrontal cortex. Chronic agmatine treatment and its endogenous modulation by l-arginine, or arcaine or aminoguanidine prevented the learning and memory impairment induced by single intracranial Aß1-42 peptide injection. In conclusion, the present study suggests the importance of the endogenous agmatinergic system in ß-amyloid induced memory impairment in mice.


Assuntos
Agmatina/metabolismo , Agmatina/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Transtornos da Memória/metabolismo , Fragmentos de Peptídeos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/psicologia , Animais , Carboxiliases/biossíntese , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Hipocampo/enzimologia , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos , Córtex Pré-Frontal/enzimologia , Desempenho Psicomotor/efeitos dos fármacos , Ureo-Hidrolases/metabolismo
14.
Alcohol ; 83: 67-74, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31520686

RESUMO

Although ethanol withdrawal depression is one of the prominent reasons for ethanol consumption reinstatement and ethanol dependence, its neurochemical basis is not clearly understood. The present study investigated the role of the agmatinergic system in ethanol withdrawal-induced depression using the forced swim test (FST) in rats. Chronic exposure of animals to ethanol for 21 days and its abrupt withdrawal produced depression-like behavior, as evidenced by increased immobility time in the FST, compared to the pair-fed control animals. The ethanol withdrawal-induced depression was significantly attenuated by agmatine (20-40 µg/rat, i.c.v. [intracerebroventricularly]), moxonidine (50 µg/rat, i.c.v.), 2-BFI (20 µg/rat, i.c.v.), L-arginine (80 µg/rat, i.c.v.), amino-guanidine (25 µg/rat, i.c.v.), and arcaine (50 µg/rat, i.c.v.) by their once-daily administration during the withdrawal phase (Days 21, 22, and 23). The antidepressant effect of agmatine in ethanol-withdrawn rats was potentiated by the imidazoline receptor I1 agonist moxonidine (25 µg/rat, i.c.v.) and the imidazoline receptor I2 agonist, 2-BFI (10 µg/rat, i.c.v.) at their sub-effective doses. On the other hand, it was completely blocked by the imidazoline receptor I1 antagonist, efaroxan (10 µg/rat, i.c.v.) and the imidazoline receptor I2 antagonist, idazoxan (4 µg/rat, i.c.v.). In addition, agmatine levels were significantly reduced in brain samples of ethanol-withdrawn rats as compared to the pair-fed control animals. In conclusion, the present study suggests the importance of the endogenous agmatinergic system and the imidazoline receptors system in ethanol withdrawal-induced depression. The data project agmatine as a potential therapeutic target for the alcohol withdrawal-induced depression.


Assuntos
Agmatina/uso terapêutico , Alcoolismo/terapia , Depressão/prevenção & controle , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Agmatina/análise , Animais , Química Encefálica , Depressão/etiologia , Receptores de Imidazolinas/efeitos dos fármacos , Receptores de Imidazolinas/fisiologia , Masculino , Piretrinas/administração & dosagem , Piretrinas/sangue , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/complicações
15.
Pharmacol Biochem Behav ; 186: 172779, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493433

RESUMO

Alcohol is one of the most widely abused recreational drugs, largely linked with serious health and social concerns. However, the treatment options for alcohol-use disorders have limited efficacy and exhibit a range of adverse drug reactions. Large numbers of preclinical studies have projected a biogenic amine, agmatine as a promising potential treatment option for drug addiction, including alcoholism. In the present study, administration of agmatine (20-40 mg/kg, i.p.) resulted in significant inhibition of ethanol self-administration in the right p-VTA in operant conditioning paradigm. Further, acute intracranial administration of agmatine (20 and 40 µg/rat) significantly reduced the ethanol consumption in the two bottle choice paradigm. Agmatine is degraded to putrescine and guanido-butanoic acid by the enzyme agmatinase and diamine oxidase respectively and inhibition of these enzymes results in augmentation of endogenous agmatine. In the present study, diamine oxidase inhibitor, aminoguanidine and agmatinase inhibitor, arcaine were used to block the agmatine metabolic pathways to increase brain agmatine levels. Drugs that augment endogenous agmatine levels like L-arginine (80 µg/rat, i.c.v.) or arcaine (50 µg/rat, i.c.v.) and aminoguanidine (25 µg/rat, i.c.v.) also reduced the ethanol consumption following their central administration. The pharmacological effect of agmatine on ethanol consumption was potentiated by imidazoline receptor agonists, I1 agonist moxonidine (25 µg/rat, i.c.v.), and imidazoline I2 agonist, 2-BFI (10 µg/rat, i.c.v.) and was blocked by imidazoline I1 antagonist, efaroxan (10 µg/rat, i.c.v.), and I2 antagonist, idazoxan (4 µg/rat, i.c.v.) at their ineffective doses per se. Thus, our result suggests the involvement of imidazoline I1 and I2 receptors in agmatine induced inhibition of ethanol consumption in rats.


Assuntos
Agmatina/farmacologia , Etanol/administração & dosagem , Receptores de Imidazolinas/efeitos dos fármacos , Consumo de Bebidas Alcoólicas , Animais , Condicionamento Operante , Feminino , Masculino , Ratos , Ratos Wistar , Autoadministração
16.
Alcohol Clin Exp Res ; 43(4): 747-757, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735249

RESUMO

BACKGROUND: Locomotor sensitization to repeated ethanol (EtOH) administration is proposed to play a role in early and recurring steps of addiction. The present study was designed to examine the effect of agmatine on EtOH-induced locomotor sensitization in mice. METHODS: Mice received daily single intraperitoneal injection of EtOH (2.5 g/kg, 20 v/v) for 7 consecutive days. Following a 3-day EtOH-free phase, the mice were challenged with EtOH on day 11 with a single injection of EtOH. Agmatine (10 to 40 µg/mouse), endogenous agmatine enhancers (l-arginine [80 µg/mouse], arcaine [50 µg/mouse], aminoguanidine [25 µg/mouse]), and imidazoline receptor agonist/antagonists were injected (intracerebroventricular [i.c.v.]) either daily before the injection of EtOH during the 7-day development phase or on days 8, 9, and 10 (EtOH-free phase). The horizontal locomotor activity was determined on days 1, 3, 5, 7, and 11. RESULTS: Agmatine (20 to 40 µg/mouse) administration for 7 days (development phase) significantly attenuated the locomotor sensitization response of EtOH challenge on day 11. Further, the agmatine administered only during EtOH-free period (days 8, 9, and 10) also inhibited the enhanced locomotor activity on the 11th day to EtOH challenge as compared to control mice indicating blockade of expression of sensitization. Daily treatment (i.c.v.) with endogenous agmatine enhancers like l-arginine (80 µg/mouse) or arcaine (50 µg/mouse) and aminoguanidine (25 µg/mouse) restrained the development as well as expression of sensitization to EtOH. Imidazoline I1 receptor agonist, moxonidine, and I2 agonist, 2-BFI, not only decreased the development and expression of locomotor sensitization but also potentiated the effect of agmatine when employed in combination. Importantly, I1 receptor antagonist, efaroxan, and I2 antagonist, idazoxan, blocked the effect of agmatine, revealing the involvement of imidazoline receptors in agmatine-mediated inhibition of EtOH sensitization. CONCLUSIONS: Inhibition of EtOH sensitization by agmatine is mediated through imidazoline receptors and project agmatine and imidazoline agents in the pharmacotherapy of alcohol addiction.


Assuntos
Agmatina/farmacologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Etanol/antagonistas & inibidores , Agmatina/antagonistas & inibidores , Animais , Arginina/administração & dosagem , Arginina/farmacologia , Benzofuranos/farmacologia , Biguanidas/administração & dosagem , Biguanidas/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Etanol/farmacologia , Guanidinas/administração & dosagem , Guanidinas/farmacologia , Idazoxano/farmacologia , Imidazóis/farmacologia , Receptores de Imidazolinas/agonistas , Receptores de Imidazolinas/antagonistas & inibidores , Infusões Intraventriculares , Masculino , Camundongos , Microinjeções , Atividade Motora/efeitos dos fármacos
17.
Pharmacol Biochem Behav ; 167: 42-49, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29530492

RESUMO

Nicotine abstinence following chronic exposure is associated with impairments in memory and variety of cognitive functions. Daily nicotine (2 mg/kg, sc, four times daily) administration for 14 days and its abrupt withdrawal significantly impaired avoidance learning in inhibitory avoidance task as indicated by a significant decrease in the step through latency. Animals injected with agmatine (10-40 µg/rat, icv) from day 7 to 14 before the first daily dose of nicotine (2 mg/kg, sc) showed increased step through latencies during retrieval test. Similarly Intracerebroventricular injection of l-arginine (25-100 µg/rat), a biosynthetic precursor of agmatine and arcaine (50 µg -100 µg/rat), an agmatinase inhibitor, also increased the step through latency during retrieval test in nicotine withdrawn animals. In separate experiments, α2-adrenoceptor agonist, clonidine (0.5-1 µg/rat, icv) not only demonstrated significant increase in the step through latency as in nicotine withdrawn rats but also potentiated the pharmacological effect of agmatine. In contrast, pre-treatment of α2-adrenoceptor antagonist, yohimbine (0.5 µg/rat, icv) antagonized the memory enhancing effect of agmatine (20 µg/rat, icv) in nicotine withdrawn rats. In addition, brain agmatine analysis carried out at 72 h time point of nicotine withdrawal showed marked decrease in basal brain agmatine content as compared to control. Overall, the data indicate that agmatine attenuates nicotine withdrawal induced memory impairment through modulation of α2adrenergic receptors. Thus, agmatine might have therapeutic implications in the treatment of cognitive deficits following nicotine withdrawal.


Assuntos
Agmatina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Inibição Psicológica , Nicotina/efeitos adversos , Receptores Adrenérgicos alfa 2/metabolismo , Síndrome de Abstinência a Substâncias/prevenção & controle , Agmatina/administração & dosagem , Agmatina/antagonistas & inibidores , Agmatina/metabolismo , Animais , Arginina/farmacologia , Biguanidas/farmacologia , Encéfalo/metabolismo , Clonidina/farmacologia , Disfunção Cognitiva/psicologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Infusões Intraventriculares , Masculino , Memória/efeitos dos fármacos , Nicotina/farmacologia , Ratos , Ioimbina/farmacologia
18.
Biomed Pharmacother ; 86: 271-278, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28006753

RESUMO

The present study investigated the pharmacological effect of agmatine in Complete Freud Adjuvant (CFA) induced arthritis and cachexia in rats. The rats were injected with CFA (0.1ml/rat) to induced symptoms of arthritis. Day 8 onwards of CFA administration, rats were injected daily with agmatine for next 7days, and arthritis score, body weights and food intake were monitored daily (g). Since cachexia is known to produce severe inflammation, malnutrition and inhibition of albumin gene expression, we have also monitored the total proteins, albumin, TNF-α and IL-6 levels in arthritic rats and its modulation by agmatine. In the present study, CFA treated rats showed a progressive reduction in both food intake and body weight. In addition analysis of blood serum of arthritis animals showed a significant reduction in proteins and albumin and significant elevation in tumor necrosis factor (TNF)-α and Interleukins (IL)-6. Chronic agmatine (20-40mg/kg, ip) treatment not only attenuated the signs of arthritis but also reverses anorexia and body weight loss in CFA treated rats. In addition, agmatine restored total protein and albumin and reduces TNF-α and IL-6 levels in arthritis rats. These results suggest that agmatine administration can prevent the body weights loss and symptoms of arthritis via inhibition of inflammatory cytokines.


Assuntos
Agmatina/uso terapêutico , Artrite Experimental/tratamento farmacológico , Caquexia/tratamento farmacológico , Agmatina/farmacologia , Animais , Artrite Experimental/patologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Caquexia/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley
19.
Eur J Pharmacol ; 754: 190-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25744879

RESUMO

Smoking cessation exhibits an aversive withdrawal syndrome characterized by both increases in somatic signs and affective behaviors including anxiety and depression. In present study, abrupt withdrawal of daily nicotine injections (2mg/kg, s.c., four times daily, for 10 days) significantly increased somatic signs viz. rearing, grooming, jumping, genital licking, leg licking, head shakes with associated depression (increased immobility in forced swim test) as well as anxiety (decreased the number of entries and time spent in open arm in elevated plus maze) in nicotine dependent animals. The peak effect was observed at 24h time point of nicotine withdrawal. Repeated administration of agmatine (40-80µg/mouse, i.c.v.) before the first daily dose of nicotine from day 5 to 10 attenuated the elevated scores of somatic signs and abolished the depression and anxiety like behavior induced by nicotine withdrawal in dependent animals. However, in separate groups, its acute administration 30min before behavior analysis of nicotine withdrawal was ineffective. This result clearly shows the role of agmatine in development of nicotine dependence and its withdrawal. In extension to behavioral experiments, brain agmatine analyses, carried out at 24h time point of nicotine withdrawal demonstrated marked decrease in basal brain agmatine concentration as compared to control animals. Taken together, these data support the role of agmatine as common biological substrate for somatic signs and affective symptoms of nicotine withdrawal. This data may project therapies based on agmatine in anxiety, depression and mood changes associated with tobacco withdrawal.


Assuntos
Agmatina/uso terapêutico , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Nicotina/efeitos adversos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Agmatina/administração & dosagem , Agmatina/farmacocinética , Agmatina/farmacologia , Animais , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/induzido quimicamente , Infusões Intraventriculares , Masculino , Camundongos , Síndrome de Abstinência a Substâncias/prevenção & controle , Tabagismo/tratamento farmacológico
20.
Pharmacol Biochem Behav ; 132: 136-141, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25782747

RESUMO

Anorexia nervosa is a debilitating eating disorder characterized by hypophagia, body weight loss, amenorrhea and intense fear of weight gain. In present study, the effect of subchronic agmatine treatment on development of activity based anorexia (ABA) in female rats has been investigated. Animals were injected with saline or agmatine (10-40 mg/kg, ip) just before the onset of dark phase and shifted to experimental cage with wheel for ABA test for 10days. A pre-weighed quantity of food pellets (10g) was placed daily for a restricted period of only 2h (1700-1900h) and food intake was monitored (g) manually by weighing the leftover food. Rats restricted to ABA paradigm, showed greater wheel running, suppressed food consumption, disrupted estrous cycle and weight loss. On the other hand, subchronic agmatine (10-40mg/kg, ip, for 10days) treatment decreased wheel running activity, pronounced increased in food intake and restored body weights as compared to saline treated animals. Further, agmatine treatment decreased corticosterone levels in ABA rats, thereby stabilizing HPA axis in ABA rats. Subchronic agmatine treatment also prevented the disruptions of estrous cycle. Considering the common resistance of anorexia nervosa to current pharmacotherapy, the preliminary data on reduction of physical activity by agmatine, may have potential therapeutic importance. Thus, the role of agmatine in feeding behavior is likely to provide insight into the circumstances that facilitate treatment in eating disorders like anorexia nervosa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...